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Abstract

In this paper, the new concept of output frequency-response function (OFRF) that was derived recently by the authors

from the Volterra-series theory of nonlinear systems is briefly introduced. An effective algorithm is proposed to determine

the monomials in the OFRF-based representation of the output frequency response of nonlinear systems. The results are

then used to analyze the output frequency response of a passive engine mount. Important conclusions regarding the effects

of system nonlinearity on the output frequency-response behaviors of the engine mount are reached via theoretical analysis

and verified by simulation studies. These conclusions are of significant importance for the analysis and design of vibration

isolators such as engine mounts in practice.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An isolator is a device that is often inserted between a support base and a piece of equipment to reduce the
vibration within the equipment. The design of isolators always presents a challenge because there are various
criteria and indices, which design engineers have to take into account. Linear isolators have been widely
studied in literatures where the design criteria and indices can explicitly be related to the design parameters
[1–3]. Obviously, this can considerably facilitate a design process. For example, Soliman and Ismailzadeh [2]
analytically linked the transmissibility of linear isolators to the optimal values of mass, stiffness, and damping
ratios, and consequently related the system resonant characteristics to these parameters.

The design of engine mounts based on the principle of linear isolator designs has been reported in many
recent studies. Tao et al. [4] applied the sequential quadratic programming method to select the stiffness
coefficient and orientations of a marine engine mount in order to minimize the vertical force transmitted from
the engine to the floor and to control the structure-borne noise. Nakhaie Jazar et al. [5] used the root mean
square (rms) method to optimize damping and stiffness values for an isolator by minimizing certain cost
functions related to the absolute acceleration and relative displacement. A genetic algorithm was implemented
by Alkhatib et al. [6] to conduct the optimal design of a car suspension system.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Recently, researchers have shown more and more interests in nonlinear isolators. This is because
all isolators in shock and vibration systems are inherently nonlinear [7–9], and the existence of non-
linearities has to be taken into account in designs if a better performance is to be achieved. For example,
Mallik et al. [7] experimentally verified that the restoring and damping forces of elastomeric isolators
have to be described using a nonlinear model. Richards and Singh [8,9] found that rubber isolators have
both nonlinear damping and nonlinear stiffness. As a result of this, nonlinear isolators have been exten-
sively studied by using both analytical and numerical approaches [10–13]. Chandra et al. [10] studied the
transient responses of nonlinear, dissipative shock isolators using perturbation method and the Laplace
transform. They also tried to improve the performance of a nonlinear shock isolator by comparing
the behaviors of four different alternatives [11]. Popov and Sankar [12] studied the effect of nonlinear
orifice-type damping on the response of a vibration isolator and found the nonlinear damping can cause a
significant shift of the resonant frequency to a smaller value. Ravindra and Mallik [13] para-
metrically investigated the effects of various types of damping on the performance of nonlinear vibration
isolators under harmonic excitations. In addition, different methods have been proposed to optimize the
designs of nonlinear isolators [14–17]. Nayfeh et al. [14] proposed an optimal design method based on the
concept of localized nonlinear normal modes. Royston and Singh [15] proposed an analytical framework for
the optimization design of mounting systems where nonlinear effects were taken into account. Deshpande
et al. [16] investigated the jump avoidance condition for the secondary suspension of a piecewise linear
vibration isolation system, and used the rms method to optimize the secondary suspension within a no jump
zone. Nakhaie Jazar et al. [17] studied the jump avoidance condition for the design of a nonlinear passive
engine mount.

Compared with the optimization of linear isolators, the optimization of nonlinear isolators is much more
complicated. This is due to the lack of an explicit analytical description for the relationship between the system
nonlinearity and the system output frequency response [17]. The Volterra series is a powerful tool that can deal
with a wide class of nonlinear systems [18,19] and can provide a straightforward theoretical explanation to the
appearance of many nonlinear effects including the generation of super-harmonics and the appearance of
subharmonic resonances. Most recently, the authors [20] have proved that the nonlinear system frequency
responses determined by the Voltrerra-series approach is one of the solutions that can be obtained by the well-
known harmonic balance method.

Based on the Volterra-series theory of nonlinear systems, the authors recently propose a new concept known
as output frequency-response function (OFRF) for nonlinear systems, which can be described by a
polynomial-type nonlinear differential equation model that have been widely used to model nonlinear
isolators [21]. This paper is dedicated to the use of the OFRF concept to derive an explicit analytical
relationship between the system output frequency response and the nonlinear characteristic parameters of a
passive engine mount which has been investigated in Ref. [17]. The objectives are to analytically reveal the
effect of the nonlinear characteristics of the engine mount on the system output frequency behaviors so as to
facilitate the analysis and design of the engine mount-based vibration isolation system. Simulation studies are
performed to verify the effectiveness and significance of the new OFRF-based analysis. Although the study
focuses on a specific nonlinear passive engine mount, the approach can be easily extended to other nonlinear
isolators. The work therefore provides an important basis for the analytical study and design of nonlinear
isolators in the frequency domain.

The paper is organized as follows.
Section 2 provides a brief introduction to the results associated with the representation of nonlinear systems

in the frequency domain. These results are then applied to the determination of the frequency domain
description of the nonlinear engine mount to be investigated in the present study. Section 3 is concerned with
the application of the novel OFRF concept and associated technique to the analysis of the nonlinear engine
mount. Particularly, a recursive algorithm is derived to determine the monomial terms which are to be
included in an OFRF representation of the output spectrum for a wide class of nonlinear systems including the
engine mount system. Based on the results in Section 3, the effects of nonlinear characteristic coefficients of the
engine mount on the system output frequency responses are investigated in Section 4. Important conclusions
are reached, which has significant implication for the analysis and design of nonlinear isolators in the
frequency domain. Finally, conclusions are given in Section 5.
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2. The representation of nonlinear systems in the frequency domain

Consider the class of nonlinear systems which are stable at zero equilibrium and which can be described in
the neighborhood of the equilibrium by the Volterra series

yðtÞ ¼
XN

n¼1

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞ
Yn

i¼1

uðt� tiÞdti (1)

where y(t) and u(t) are the output and input of the system, hnðt1; :::; tnÞ is the nth-order Volterra kernel, and N

denotes the maximum order of the system nonlinearity. Lang and Billings [22] have derived an expression for
the output frequency response of this class of nonlinear systems to a general input. The result is

Y ðjoÞ ¼
PN
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Y nðjoÞ for 8o

Y nðjoÞ ¼
1=
ffiffi
n
p

ð2pÞn�1
R
o1þ:::þon¼o
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UðjoiÞdsno
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(2)

which reveals how nonlinear mechanisms operate on the input spectra to produce the system output frequency
response. In Eq. (2), Y(jo) is the spectrum of the system output, Yn(jo) represents the nth-order output
frequency response

Hnðjo1; . . . ; jonÞ ¼

Z 1
�1

. . .

Z 1
�1

hnðt1; . . . ; tnÞe
�ðo1t1þ;���;þontnÞjdt1 . . . dtn (3)

is known as the generalized frequency-response function (GFRF) [22], andZ
o1þ:::þon¼o

Hnðjo1; . . . ; jonÞ
Yn

i¼1

UðjoiÞdsno

denotes the integration of Hnðjo1; . . . ; jonÞ
Qn

i¼1UðjoiÞ over the n-dimensional hyper-plane o1+?+on ¼ o.
Eq. (2) is a natural extension of the well-known linear relationship Y(jo) ¼ H1(jo)U(jo) to the nonlinear case.

For the polynomial-type nonlinear systems described by the following differential equation [23]:

XM
m¼1

Xm

p¼0
pþq¼m

XL

l1;...lpþq¼0

cpqðl1; . . . ; lpþqÞ
Yp

i¼1

Dli yðtÞ
Ypþq

i¼pþ1

Dli uðtÞ ¼ 0 (4)

where Dly(t) ¼ dly(t)/dtl, M and L are the maximum degree of nonlinearity in terms of y(t) and u(t), and the
maximum order of derivative, respectively, the GFRFs can be recursively determined using an effective
algorithm as follows [23]:
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where

Hnpð:Þ ¼
Xn�pþ1

i¼1

Hiðjo1; . . . ; joiÞHn�i;p�1ðjoiþ1; . . . ; jonÞðjo1 þ � � � þ joiÞ
lp (6)
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with

Hn1ðjo1; . . . ; jonÞ ¼ Hnðjo1; . . . ; jonÞðjo1 þ � � � þ jonÞ
l1 (7)

Consider the specific case of a nonlinear passive engine mount as shown in Fig. 1 [17]. The motion
governing equation is given by

m €xþ ðc1 þ c2x2Þ _xþ ðk1 þ k2x
2Þx ¼ �m €x1 (8)

where x ¼ x2�x1 and k140. If the base excitation is harmonic given by

x1 ¼ A sinðotÞ (9)

then Eq. (8) can be converted to a dimensionless format as follows:

€yþ ðx1 þ x2y2Þ _yþ ð1þ ry2Þy ¼ r2 sinðrtÞ (10)

where y ¼ x=A, t ¼ o0t, o0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
k1=m

p
, r ¼ o=o0, r ¼ A2k2=k1, x1 ¼ c1

� ffiffiffiffiffiffiffiffiffi
k1m
p

, x2 ¼ A2c2
� ffiffiffiffiffiffiffiffiffi

k1m
p

.
It can be deduced that Eq. (10) is a specific instance of Eq. (4) with c0,1(0) ¼ �1, c1,0(2) ¼ 1, c1,0(0) ¼ 1,

c1,0(1) ¼ x1, c3,0(0,0,1) ¼ x2, c3,0(0,0,0) ¼ r else cp;qð�Þ ¼ 0 and uðtÞ ¼ r2 sinðrtÞ.
The GFRFs up to 5th-order of system (10) can be calculated recursively using algorithm (5)–(7) to produce

the results below:
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1

�o2
1 þ jo1x1 þ 1

(11)

H2ðjo1; jo2Þ ¼ 0 (12)
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H4ðjo1; jo2; jo3; jo4Þ ¼ 0 (14)
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The GFRFs are the extension of the frequency-response function of linear systems to the nonlinear case and
provide a description for the characteristics of nonlinear systems in the frequency domain.
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Fig. 1. Schematic of the nonlinear passive mount under a base excitation.
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3. OFRF

3.1. Basic concept

The recursive algorithm (5)–(7) provides an effective approach to the determination of the GFRFs for the
nonlinear systems described by Eq. (4). However, the algorithm cannot be readily used to explicitly reveal how
the nonlinear characteristic coefficients of system (4) have effects on the system GFRFs. In order to address
this issue, the authors proposed and proved the result in the following proposition, which reveals an explicit
analytical relationship between the nonlinear characteristic coefficients in model (4) and the system GFRFs.

Proposition 1. Denote C as the set of nonlinear characteristic parameters in model (4). Then, given the

parameters of H1(.) and frequency variables o1,y,on, the nth order GFRF of system (4) can be expressed as a

polynomial function of the parameters in C as [21]

Hnðjo1; . . . ; jonÞ ¼
X

ðj1;...jsn
Þ2Jn

Y
ðn:j1...jsn

Þ

l1...lsn
ðjo1; . . . ; jonÞl

j1
1 . . . l

jsn
sn ðnX2Þ (16)

where l1,y,lsn are the elements in C, Y
ðn:j1...jsn

Þ

l1...lsn
ðjo1; . . . ; jonÞ represents a function of o1,y,on and the

parameters in H1(.), and Jn is a set of sn dimensional nonnegative integer vectors which contains the exponents of

those monomials lj1
1 . . . l

jsn
sn which are present in the polynomial representation (16).

Obviously, Y
ðn:j1...jsn

Þ

l1...lsn
ðjo1; . . . ; jonÞ is a function that is irrelevant to the characteristic parameters of the

system nonlinearity and whose structure is only dependent on the specific structure of system (4). For

convenience of presentation, Y
ðn:j1...jsn

Þ

l1...lsn
ðjo1; . . . ; jonÞ will be referred to characteristic frequency response

function (CFRF) in the following. Therefore, Eq. (16) shows how the GFRFs of system (4) are related to the
system nonlinear characteristic parameters l1,y,lsn and these CFRFs. For example, for the nonlinear passive

engine mount (10), it is easy to derive from equations (11) to (15) that Y
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Yð5:2Þx2
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and

H3ðjo1; jo2; jo3Þ ¼ rYð3:1Þr ðjo1; jo2; jo3Þ þ x2Y
ð3:1Þ
x2
ðjo1; jo2; jo3Þ (22)

H5ðjo1; . . . ; jo5Þ ¼ r2Yð5:2Þr ðjo1; . . . ; jo5Þ þ rx2Y
ð5:1;1Þ
r;x2
ðjo1; . . . ; jo5Þ þ x22Y

ð5:2Þ
x2
ðjo1; . . . ; jo5Þ (23)

Substituting Eq. (16) into the second equation in Eq. (2) yields

Y nðjoÞ ¼
X

ðj1;...jsn
Þ2Jn

F
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Þ
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lj1
1 . . . l

jsn
sn ðnX2Þ (24)

where

F
ðn:j1...jsn

Þ

l1...lsn
ðjoÞ ¼

1=
ffiffiffi
n
p

ð2pÞn�1

Z
o1þ;���;þon¼o

Y
ðn:j1...jsn

Þ

l1...lsn
ðjo1; . . . ; jonÞ

Yn

i¼1

UðjoiÞdsno (25)

Therefore, the system output spectrum Y(jo) can be expressed as

Y ðjoÞ ¼ H1ðjoÞUðjoÞ þ
XN

n¼2

X
ðj1;...jsn

Þ2Jn

F
ðn:j1...jsn

Þ

l1...lsn
ðjoÞlj1

1 . . . l
jsn
sn (26)

This result is referred to as the OFRF in Ref. [21]. In contrast to the general perspective of the effect of the
nonlinear characteristic parameters of system (4) on the output frequency response, the OFRF reveals that
given a specific input and the system linear characteristic parameters there exists a simple polynomial
relationship between the output spectrum and the system nonlinear characteristic parameters.

For the nonlinear engine mount (10), when only the system nonlinearities up to fifth order are taken into
account, the system OFRF can be written as

Y ðjoÞ ¼ H1ðjoÞUðjoÞ þ rFð3:1Þr ðjoÞ þ x2F
ð3:1Þ
x2
ðjoÞ

þ r2Fð5:2Þr ðjoÞ þ x22F
ð5:2Þ
x2
ðjoÞ þ rx2F

ð5:1;1Þ
r;x2
ðjoÞ (27)

which clearly reveals an explicit analytical relationship between the system nonlinear characteristic parameters
r, x2 and the output spectrum Y(jo).

But to clearly understand how the nonlinear characteristic parameters affect the system output frequency
response, the values of functions F

ðn:j1...jsn
Þ

l1...lsn
ðjoÞ such as, e.g., Fr

(3:1)(jo), Fð3:1Þx2
ðjoÞ, Fr

(5:2)(jo), Fð5:2Þx2
ðjoÞ and

Fð5:1;1Þr;x2
ðjoÞ for the nonlinear passive engine mount (10) have to be first determined.

3.2. Determination of the OFRF

As indicated in Eq. (26), the OFRF of nonlinear system (4) is a polynomial function of the system nonlinear
characteristic parameters. The coefficients of the polynomial are the functions of the system output frequency,
which are determined by the specific structure of Eq. (4), the input spectrum, and the system linear
characteristic parameters. In order to use the OFRF for the system analysis and design, these coefficients have
to be determined. A straightforward method is to determine the functions of frequency F

ðn:j1...jsn
Þ

l1...lsn
ðjoÞ,

fj1; . . . ; jsn
g 2 Jn, n ¼ 1,y,N directly using a symbolic computation, and then evaluate the values of these

coefficients at the frequencies of interest. For example, consider the engine mount (10) subject to a sinusoidal
base excitation

uðtÞ ¼ r2 sinðrtÞ (28)
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it can be deduced that the first harmonic component of the system response can be written as [19]

Y ðjrÞ ¼ r2H1ðjrÞ þ
3
4
r6H3ðjr; jr;�jrÞ þ 5

16
r10H5ðjr; jr; jr;�jr;�jrÞ (29)

From Eqs. (13), (15) and (29), it can be known that

Y ðjrÞ ¼ H1ðjrÞUðjrÞ þ rFð3:1Þr ðjrÞ þ x2F
ð3:1Þ
x2
ðjrÞ

þ r2Fð5:2Þr ðjrÞ þ x22F
ð5:2Þ
x2
ðjrÞ þ rx2F

ð5:1;1Þ
r;x2
ðjrÞ (30)

where

Fð3:1Þr ðjrÞ ¼ �
3
4
r6jH1ðjrÞj

2ðH1ðjrÞÞ
2 (31)

Fð3:1Þx2
ðjrÞ ¼ �j1

4
r7jH1ðjrÞj

2ðH1ðjrÞÞ
2 (32)

Fð5:2Þr ðjrÞ ¼
3
32

r10jH1ðjrÞj
4ðH1ðjrÞÞ

2
ðH1ð�jrÞ þ 2H1ðjrÞ þH1ðj3rÞÞ (33)

Fð5:2Þx2
ðjrÞ ¼ 1

32
r12jH1ðjrÞj

4ðH1ðjrÞÞ
2
ðH1ð�jrÞ � 2H1ðjrÞ �H1ðj3rÞÞ (34)

Fð5:1;1Þr;x2
ðjrÞ ¼ j 1

16
r11jH1ðjrÞj

4ðH1ðjrÞÞ
2
ð6H1ðjrÞ þ 2H1ðj3rÞÞ (35)

However, for more complicated nonlinear systems or under other type excitations, the complicated
symbolic manipulations and numerical integrations involved in these operations imply that the straightfor-
ward method is not applicable in most practical situations. To solve this problem so that the OFRF concept
can be used to conduct nonlinear system analysis and design in practice, a numerical algorithm has been

proposed to evaluate the values of functions F
ðn:j1...jsn

Þ

l1...lsn
ðjoÞ, fj1; . . . ; jsn

g 2 Jn, n ¼ 1,y,N at the frequencies of

interest directly from system simulation or experimental test data [21]. By using the nonlinear passive engine
mount (10) as an example, this algorithm will be introduced as follows.

Denote

Fð1:0ÞðjrÞ ¼ r2H1ðjrÞ (36)

then Eq. (30) can be written as

YðjrÞ ¼ ð1 r x2 r2 x22 rx2ÞUðjrÞ (37)

where UðjrÞ ¼ ðFð1:0ÞðjrÞ;Fð3:1Þr ðjrÞ;F
ð3:1Þ
x2
ðjrÞ;Fð5:2Þr ðjrÞ;F

ð5:2Þ
x2
ðjrÞ;Fð5:1;1Þr;x2

ðjrÞÞT. Assume PX6 testes can be con-
ducted by taking (r, x2) ¼ (r(1), x2(1)),y,(r(P), x2(P)), respectively, and denote the system output frequency
responses in the P tests as Y(1)(jr),y, Y(P)(jr).

Then

ȲðjrÞ ¼ QUðjrÞ (38)

where

ȲðjrÞ ¼

Y ð1ÞðjrÞ

..

.

Y ðPÞðjrÞ

0
BB@

1
CCA and Q ¼

1 rð1Þ x2ð1Þ r2ð1Þ x22ð1Þ r1x2ð1Þ

..

.

1 rðPÞ x2ðPÞ r2ðPÞ x22ðPÞ rPx2ðPÞ

2
6664

3
7775 (39)

Therefore, F(jr) can be determined from Eq. (38) using a least square-based approach as

UðjrÞ ¼ ðQTQÞ�1QTȲðjrÞ (40)

In order to demonstrate the effectiveness of this algorithm in the analysis of the engine mount system, six
sets of responses of system (10) were generated via numerical integrations using the fourth-order Runge– Kutta
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method. These responses were obtained when x1 ¼ 0.5 and x2,r were taken as (0.15, �0.15), (0.15, 0.15), (0.12,
0.0), (0.15, �0.1), (0.0, 0.0), and (0.0, 0.12), respectively. The considered range of excitation frequency was
between r ¼ 0 and 3.0.
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Fig. 2. A comparisons between the estimated and theoretical results of coefficients of the OFRFs: (a) jFð5:2Þx2
ðjrÞj, (b) jFð5:1;1Þr;x2

ðjrÞj, (c)

jFð5:2Þr ðjrÞj, (d) jF
ð3:1Þ
x2
ðjrÞj, (e) jFð3:1Þr ðjrÞj, (f) jF

ð1:0ÞðjrÞj (solid line: estimated; asterisk: theoretical).
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Fig. 3. The OFRF predicted (solid) and numerically calculated (asterisk) responses of system (10) when x2 ¼ 0.2 and r ¼ 0.2.
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From the responses of system (10) thus generated, F(jr) was evaluated using Eq. (40). A comparison
between the estimated results and the theoretical results calculated using equations (31)–(35) is shown in
Fig. 2. It can be seen that, basically, the estimated results match the theoretical results well. The small
deviations are mainly introduced by the truncation of the Volterra-series representation.

Using the estimated OFRF, the frequency response of system (10) under x2 ¼ 0.2 and r ¼ 0.2 was predicted
from Eq. (30). The predicted frequency response is given in Fig. 3 together with the response numerically
calculated using the Runge– Kutta method. It can be seen that the OFRF-predicted frequency-response
matches the real response very well.
3.3. Determination of the monomials lj1
1 . . . l

jsn
sn in the OFRF representation of the output spectrum

of nonlinear systems

The OFRF reveals a simple polynomial relationship between the nonlinear characteristic parameters and
the output frequency response for nonlinear systems described by Eq. (4). In order to use the numerical
algorithm in Section 3.2 to determine the OFRFs, the information about what monomials are included in
Eq. (26) should be known a priori. From Eqs. (5) to (7), a recursive algorithm can be derived to determine the
monomials which have to be included in an OFRF representation of the output frequency response of the
nonlinear systems as below.

Denote the set of all the monomials involved in the representation of Yn(jo) given by Eq. (16) as Mn, and
M1 ¼ [1], then Mn can be determined as

Mn ¼
[L

l1;...;ln¼0

½c0nðl1; . . . ; lnÞ�

" #
[
[n�1
q¼1

[n�q

p¼1

[L
l1;...;ln¼0

½cpqðl1; . . . ; lpþqÞ� �Mn�q;p

� �" #

[
[n
p¼2

[L
l1;...;lp¼0

cp0ðl1; � � � ; lpÞ
� �

�Mnp

� �2
4

3
5 (41)

where � is the Kronecker product, and

Mnp ¼
[n�pþ1

i¼1

ðMi �Mn�i;p�1Þ and Mn1 ¼Mn (42)
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Apparently, the set of the monomials in Eq. (24) can be expressed as

M̄N ¼
[N
n¼1

Mn (43)

It can be observed that the algorithm defined by Eqs. (41)–(43) has a form similar to Eqs. (5) and (6). The
proof of this algorithm is therefore straightforward. Its effectiveness can be demonstrated using the nonlinear
mount (10) as an example as follows.

Applying the algorithm to system (10) up to the seventh-order yields

M2 ¼ Null

M3 ¼ ½½x2� � ½1�� [ ½½r� � ½1�� ¼ ½x2 r�

M4 ¼ Null

M5 ¼ ½½x2� �M3� [ ½½r� �M3� ¼ x22 x2r r2
h i

M6 ¼ Null

M7 ¼ ½½x2� �M5� [ ½½r� �M5� [ ½½x2� �M3 �M3� [ ½½r� �M3 �M3�

¼ x32 x22r x2r2 r3
h i

Therefore,

M̄5 ¼
[5
n¼1

Mn ¼ x22 x2r r2 x2 r 1
h i

M̄7 ¼
[7
n¼1

Mn ¼ x32 x22r x2r2 r3 x22 x2r r2 x2 r 1
h i

Clearly, M̄5 are the parameter vector used in the OFRF of system (10) given by Eq. (37). Algorithm
(41)–(43) can be easily implemented using a symbolic operation method. The algorithm therefore provides a
convenient way to determine the monomials involved in the OFRF representation of the output frequency
response of nonlinear systems.
4. The effects of system nonlinearity on the output frequency responses

In this section, the effects of nonlinear damping characteristic parameter x2 and nonlinear stiffness
characteristic parameter r on the output frequency response of the passive engine mount (10) are studied using
the OFRF concept. The focus is to investigate how the parameters x2 and r affect the first harmonic
component of the system output frequency response.

When up to third-order system nonlinearities is taken into account, the OFRF of system (10) can be
obtained from (30) as

Y ðjrÞ � r2H1ðjrÞ½1� �ð3rþ jx2rÞH1ðjrÞ� (44)

where � ¼ 1
4
r4jH1ðjrÞj

2. Substituting Eq. (11) into Eq. (44) yields

Y ðjrÞ � r2H1ðjrÞ 1�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2Þ2 þ ðrx1Þ
2

q ð3rþ jx2rÞð1� r2 � jrx1Þ

2
64

3
75

¼ r2H1ðjrÞðA� jBÞ (45)
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where

A ¼ 1� 3rmð1� r2Þ � x2mx1r2; B ¼ mrð�3rx1 þ x2ð1� r2ÞÞ; m ¼
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2Þ2 þ ðrx1Þ
2

q
Consider the cases where x2 and r are varied within the range of [0.0, 0.2] and x1 ¼ 0.5. The analysis of the

effect of x2 and r on the output frequency response of the nonlinear engine mount (10) is conducted in the
three situations of ro1.0, r41.0, and r ¼ 1.0, respectively.

Case 1: (ro1.0). In this case, the engine mount is working in the frequency range below its resonant
frequency. It is not difficult to know that, over the considered range of values of r and x2, B is much smaller
than A in amplitude. Therefore, only the effect of A on Y(jr) is considered. Obviously, A monotonically
decreases when either r or x2 increases. Therefore, the first harmonic component of the frequency response of
the nonlinear mount (10) can be reduced by increasing either r or x2. Moreover, when r2o3/3.5:

3mð1� r2Þ4mx1r
2 (46)

the effect of r is more significant than that of x2 in reducing the amplitude of the first harmonic component of
Y(jr). Fig. 4 shows the simulation results obtained using the fourth-order Runge– Kutta method when r ¼ 0.8,
and x2, r are varied within the range of [0.0, 0.2]. From Fig. 4, it can be clearly seen that the amplitudes of the
first harmonic component decrease with the increase of x2 and r, and the effect of r on this decrease is more
significant than the effect of x2. These observations are exactly consistent with the above OFRF-based
analysis.

Case 2: (r 4 1.0). In this case, the engine mount works in the frequency range above its resonant frequency.
It can be known that, over the considered range of r and x2, A monotonically decreases with the increase of x2
but increases with the increase of r. Meanwhile, the absolute value of B monotonically decreases with the
increase of both r and x2. Therefore, it can be predicted that, when the nonlinear mount works over the
frequency range above the resonant frequency, the first harmonic component increases with the increase of r.
Also because the value of B is much smaller than A, the effects of r and x2 on A is the main effect. Therefore, it
can be known that the amplitude of the first harmonic component can be reduced by a increase of x2. Fig. 5
shows the simulation results obtained using the fourth-order Runge– Kutta method when r ¼ 2.0, and x2,r are
varied within the range of [0.0, 0.2]. The results clearly show that the amplitudes of the first harmonic
component decrease with the increase of x2, but increase with the increase of r. These observations are again
consistent with the OFRF-based analysis results.
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Fig. 4. The modulus of the first harmonic component of system (10) obtained using the Runge– Kutta method (r ¼ 0.8, x1 ¼ 0.5).
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Case 3: (r ¼ 1.0). In this case, the engine mount works at the resonant frequency, and A and B can be
simplified as

A ¼ 1� x2mx1 and B ¼ �3rrx1m (47)

Obviously, A monotonically decreases with the increase of x2 while the absolute value of B monotonically
increase with the increase of r. Because of this, the amplitude of the first harmonic component of the output
frequency response of system (10) should increase with the increase of r but decrease with the increase of x2.
However, the simulation results in Fig. 6 show that the amplitude of the first harmonic component
monotonically decreases with an increase of both r and x2. The inconsistency between the analysis and
simulation results is due to the fact that, when working at the resonant frequency, the behavior of the
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Fig. 5. The modulus of first harmonic component of system (10) obtained using the Runge– Kutta method (r ¼ 2.0, x1 ¼ 0.5).
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Fig. 6. The modulus of first harmonic component of system (10) obtained using the Runge– Kutta method (r ¼ 1.0, x1 ¼ 0.5).
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nonlinear mount (10) is considerably nonlinear but the contributions from higher order system nonlinearities
were ignored in the OFRF-based analysis.

If the contribution of Fð5:2Þr ðjrÞ, F
ð5:2Þ
x2
ðjrÞ and Fð5:1;1Þr;x2

ðjrÞ is taken into account in the OFRF representation of
the output spectrum of system (10), the first harmonic component of the system output frequency response can
be described as

Y ðjrÞ � r2H1ðjrÞ

� 1� �ð3rþ jx2rÞ � d

3r2ðH1ð�jrÞ þ 2H1ðjrÞ þH1ðj3rÞÞ

þx2r2ðH1ð�jrÞ � 2H1ðjrÞ �H1ðj3rÞÞ

þj2rx2rð6H1ðjrÞ þ 2H1ðj3rÞÞ

0
BB@

1
CCA

0
BB@

1
CCAH1ðjrÞ

2
664

3
775 (48)

where d ¼ 1
32

r8jH1ðjrÞj
4. At r ¼ 1, compared with H1(jr), H1(j3r) is ignorable. Eq. (48) can be simplified to be

Y ðjrÞ � �j
1

x1
1þ �ðj3r� x2Þ � d

1

x1
ð3r2 � 3x22 þ j12x2rÞ

� 	
1

x1


 �
¼ B̄� jĀ (49)

where

Ā ¼
1

x1
1� �

x2
x1
�

d

x21
ð3r2 � 3x22Þ

" #
and B̄ ¼ 3

r
x1

�

x1
� 4

d

x21
x2

 !

Obviously, at the considered range of r and x2, both A and B monotonically decrease with x2. This implies
that, when the nonlinear mount operates at the resonant frequency, the first harmonic component of the
output frequency response can be reduced by an increase of x2. However, the situation for r is relatively
complicated. It can be seen that an increase of r can make A decrease but B increase and, when r ¼ 0, B is
close to zero. The imaginary and real parts of the simulation results in Fig. 6 are separately shown in Fig. 7,
which indicate clearly that both A and B monotonically decrease with the increase of x2, and A decreases with
the increase of r while B monotonically increases with the increase of r. Moreover, the value of B is close to
zero at r ¼ 0. So, by taking into account of the contribution of the fifth order nonlinearity in the OFRF-based
analysis, the behavior of the nonlinear mount working at the resonant frequency has been correctly predicted.
Moreover, it can be seen that an increase of x2 is more effective than an increase of r in suppressing the
amplitude of the first harmonic component.

It has to be pointed out here that, due to the strong nonlinear behavior of the nonlinear mount at the
resonant frequency, Eq. (49) can only provide a qualitative analysis and prediction for the system output
frequency response.
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Fig. 7. The real (a) and imaginary (b) parts of the simulation results in Fig. 6.
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The analysis results for the nonlinear mount (10) working at three different conditions can be summarized
as below:
(1)
 When the nonlinear mount (10) works over a frequency range below the resonant frequency, an increase in
either the nonlinear damping or the nonlinear stiffness can all reduce the amplitude of the first harmonic
component of the system output frequency response; but the increase of the nonlinear stiffness is more
effective in terms of suppressing the first harmonic component.
(2)
 When the nonlinear mount (10) works over a frequency range above the resonant frequency, an increase of
the nonlinear damping can reduce the amplitude of the first harmonic component of the system output
frequency response; but the effect of an increase of the nonlinear stiffness is just the opposite.
(3)
 When the nonlinear mount (10) works at the resonant frequency, an increase of the nonlinear damping or
the nonlinear stiffness rate can all reduce the amplitude of the first harmonic component of the system
output frequency response; but the increase of the nonlinear damping is more effective in terms of
suppressing the first harmonic component.
These conclusions are of significant importance in the analysis and design of the nonlinear passive engine
mount (10), and can be regarded as a guideline for the design or selection of mounts. For example, if a mount
works over the frequency region below the resonant frequency, the guideline indicates that the mount should
have a strong nonlinear stiffness. If a mount works over a frequency region above the resonant frequency, the
guideline shows that the mount should have a strong nonlinear damping but a weak nonlinear stiffness.

It has to be pointed out that the Volterra series truncated at the third or fifth order has been used,
respectively, in the above case studies. The analysis using an OFRF based on the third-order Volterra-series
truncation produces a reasonable analysis result apart from the effect of r on the output spectrum. However,
an improvement is obviously achieved using an OFRF based on the fifth-order Volterra-series truncation and
correct results are obtained. This demonstrates that provided a sufficiently higher order Volterra-series
truncation is used in the OFRF representation for the system output frequency response, correct analyses for
the effects of system nonlinear characteristic parameters on the output spectrum can be achieved.

In normal working conditions of most practical systems, experiences indicate that the Volterra series is
usually able to describe basic system behavior. In such circumstances, the maximum order of system
nonlinearity that needs to be considered in an OFRF representation depends on the accuracy required for the
OFRF-based analysis, and the numerical approach developed in the author’s previous work [24] can be used
to provide a sufficient condition regarding the maximum order required in the system Volterra-series
representation. In addition, for many specific cases including the case of the well-known Duffing oscillator,
great efforts [25–31] have been made to theoretically address the issues associated with the truncated Volterra-
series-based system representations. In such specific cases, these theoretical results can be used to analytically
determine the maximum order of system nonlinearity in the system’s Volterra-series representation.
5. Conclusions and remarks

In this paper, the new OFRF concept and associated methods have been briefly introduced. An effective
algorithm has been proposed to determine the monomials involved in the OFRF representation of the output
frequency response of nonlinear systems. The OFRF-based approach is then used to analyze the effects of the
nonlinear characteristic parameters of a passive engine mount on the output frequency response. Important
conclusions have been obtained and validated using simulation studies. These results are of significant
importance in the analysis and design of nonlinear passive engine mounts, and can be used as a guideline for
the design and selection of mounts or isolators in engineering applications. It is worth pointing out that the
approach proposed in this paper can be extended to multidegree of freedom (mdof) Systems. It has been
observed that the OFRF of mdof systems can analytically link the system output spectrum to the
characteristic parameters of nonlinear springs and/or nonlinear dampers so as to considerably facilitate the
system analysis and design. The authors are currently working on these ideas. The results will be reported in
future publications.
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